
1

Introduction 1

With increasing global competition, corporations today are facing new
challenges in bringing their products and services to market. The globalization
of today’s corporations, decentralization of corporate operations, and the
accelerated rate of change in markets and competition are all factors
representing both challenges and opportunities for today’s businesses.

Modern companies are increasingly becoming information-based
organizations, dependent upon the continuous flow of data for virtually every
aspect of their operations. However their ability to handle data is breaking
down because the volume of information is growing at a faster rate than their
ability to process it. Further complicating matters is the difficulty that
traditional monolithic applications have in representing an organization’s
business processes effectively — particularly as those processes or the
organization itself changes.

Networked object technology such as Solaris™ NEO™ represent the best
opportunity to meet the demands of agile organizations. Solaris NEO
applications can effectively encapsulate business practices, policies, and tactics
in modular components engineered to be re-engineered. Fast prototyping and
updating capabilities encourage a development model that can design, test,
and deploy a new application in less time and with less effort than traditional
development methods. With Solaris NEO, legacy software can be encapsulated
in objects, retaining its semantics and continuing to serve its users while it
gracefully evolves into a fully networked application.



2 Solaris NEO Operating Environment — January 1996

1

Software for Dynamic Enterprise Systems

The Solaris NEO product family fosters the rapid development and
deployment of customized networked applications designed to interoperate
with legacy data and software, with MS-Windows desktops, and with other
OMG-compliant object systems. Sun’s leading multiprocessing (MP) and
multithreading (MT) client-server technologies further provide an industrial
strength platform with scalable performance to build networked object
applications today.

Rapid Response to Change for a Competitive Advantage

Rapidly changing markets and business practices compel business to
constantly improve policies and services. This translates into the need to create
and modify software quickly. Unfortunately, traditional development
techniques have slowed this necessary response to change. Solaris NEO
enables custom, complex applications to be built, tested, enhanced, and
deployed faster because they can be constructed from reusable components
that have already been tested and proven.

To facilitate this streamlined approach to object application development,
Solaris NEO provides a robust and complete infrastructure for shared
networked services, including access to stored data, and a consistent, intuitive,
rich graphical interface that facilitates the rapid development of new
applications.

Object Technology Enables Application Flexibility

Object technology especially benefits businesses whose primary concern is the
creation of custom applications. Using objects to abstract the logic, data, and
networking, frees developers from dealing with time consuming
implementation details and empowers them to concentrate on the application’s
semantics. Telecommunications, customer service, and financial industries are
prime examples of businesses that can serve their customers better with
custom applications that can be quickly changed to keep pace with market
trends.



Introduction 3

1

Reducing the Software Development and Maintenance Burden

The intrinsic inheritance of objects allows multiple levels of re-use, making it
faster and easier over time to produce functions, programs, and entire systems
from tested and optimized components. Built largely from existing object
modules, new applications are easier to create, develop, deploy, modify, and
maintain. Further, programming to a well defined interface definition that is
independent of any specific language, operating system, or vendor allows true
heterogeneous network interoperability.

Solaris NEO provides an extensive foundation of reusable components that
form the basis for building new applications. Services to support the
presentation and management of networked applications are built into its
runtime environment, as are objects which can exploit Solaris’ advanced
multithreading capability. Building on these existing services encourages
modification through a refinement development model that produces
applications quickly, reducing the application development backlog that has
troubled many MIS organizations.

Shared Services Enable the Networked Enterprise

Solaris NEO promotes an additional level of abstraction, viewing the
application as components selected from three categories of objects that are
readily combined for building flexible solutions. Separating the user interface
and data access methods from shared business processes, practices, and
policies, makes it easier to refine the application to meet changing
requirements (see Figure 1). Because the user interface and back-end data are
separated from the core application logic, changes are easier to implement in
both the user interface and the application itself. Further, back-end data
storage operations are now independent of the application, and hence can be
designed to scale more easily and be upgraded when needed.

Figure 1 Three-Tier Computing Architecture

GUI

Business Tier

Corporate Data



4 Solaris NEO Operating Environment — January 1996

1

The Solaris NEO Operating Environment provides an excellent means to
implement this architecture:

• A consistent, visually rich user interface for both general-purpose as well as
custom applications provides an intuitive environment that helps leverage
the user’s time and productivity. Building on proven user interface objects
helps facilitate fast prototyping and shortened development cycles.

• Generic business objects may be developed first followed by more specific
sub-classes built from these original objects and inheriting functionality
from their parents. These objects are then used to build custom applications
precisely tailored to meet very specific needs. Separating business processes,
practices, and policies from the rest of the application enables it to be
refined dynamically to meet market and competitive demands, while at the
same time delivering a superior quality product.

• Data access may also be isolated and is seen as the third element of this model.
Whether using the built-in persistence offered by Solaris NEO, or the ability
to access legacy data stored in Relational Database Management Systems
(RDBMS) or Object Oriented Database Management Systems (OODBMS),
objects may be built to handle any data requirement.

Multiple servers may be brought on-line dynamically, allowing the enterprise
network to balance loads for peak periods. Reliability may be increased
through distributed client-server replication management and tuned to any
desired level of redundancy.



5

The NEO Product Family 2

A Comprehensive Solution

The built-in networking of Solaris is the foundation of SunSoft’s object
environment, and provides a transparent, high performance, distributed
computing infrastructure. Industry-leading multiprocessing and
multithreading technology ensures that Solaris NEO can scale to meet growing
demands of enterprise-wide networked applications, while bundled Solstice
NEO management tools allow total control of the object network from any
location.

Advanced productivity tools available in Workshop NEO enable team software
development with an object-oriented interface builder that speeds and
simplifies the building of prototypes. Promotion of, and conformance to,
industry standards further ensures connectivity with mainframes as well as
with MS-Windows based desktops. Further, database connectivity and built-in
persistence and encapsulation methods provide easy access to legacy data.

Figure 2 illustrates the five key dimensions of the NEO Product Family.
Together, Solaris NEO, Solstice NEO, WorkShop NEO, and complementary
MS-Windows and database connectivity technology, provide a comprehensive
solution for enterprise application systems.



6 Solaris NEO Operating Environment — January 1996

2

Figure 2 Solaris NEO Product Family

As illustrated in Figure 3, Solaris NEO delivers the means to implement and
deploy a comprehensive set of services for the networked enterprise. With
Solaris NEO, a three-tier computing architecture can be efficiently
implemented that provides scalable, and flexible networked applications.

MS-Windows
Connectivity

Operating

Environment

Development
Tools

Database

Connectivity
Administration

Tools

The

NEO

Product

Family



The NEO Product Family 7

2

Figure 3 Solaris NEO components supports efficient three-tier computing

Standards for Interoperability

With a membership of over 500 software vendors, developers, and end users,
the Object Management Group (OMG™) continues to develop the standards
that will ensure a common architecture for heterogeneous, distributed, object-
oriented applications. SunSoft was a founding member of the OMG, and has
contributed many key specifications designed to ensure portability and
interoperability between object system products from multiple vendors.

A major benefit of truly heterogeneous networked objects is the ability to
integrate disparate platforms, allowing information resources to be shared
across the network, independent of specific operating systems, languages, or
implementation techniques. The cornerstone of this effort is the method by
which interfaces to objects are defined, allowing behavior to be characterized
without specifying the method used to implement it. Evidence of its
commitment to both standards and object technology, SunSoft contributed the
Interface Definition Language (IDL) to the OMG.

OpenStep

CORBA

Shared
Business

Corporate
Data

Desktop

Objects



8 Solaris NEO Operating Environment — January 1996

2

Through the availability of a standardized Inter-ORB Protocol (IOP), vendors
can supply objects that interoperate in a heterogeneous environment. OMG’s
CORBA 2.0 standard Internet IOP (IIOP) is based on TCP/IP, and SunSoft
provides a sample reference implementation free of charge, thus enabling
vendors to be certain that their systems, objects and applications are
interoperable.

Solaris NEO Operating Environment

Solaris NEO is a comprehensive operating environment that includes an
intuitive, rich graphical desktop, a networked object infrastructure, an
advanced runtime environment for shared services, and administration and
management tools. Figure 4 illustrates the component structure of Solaris NEO.
The shaded boxes represent shared runtime libraries.

Figure 4 Solaris NEO components

Solaris

Desktop Services Shared Services Data Services

Networked Object Infrastructure

NEO Desktop

NEO Network

Solstice NEO

DatabaseMS-WindowsN

E

O

X11/DPS

NEO ServicesOpenStep

Networked Applications

ORB
Object Services

Connectivity Connectivity



The NEO Product Family 9

2

NEO Desktop

The NEO Desktop is a user-friendly OpenStep-based application environment
consisting of the following elements:

• Window Manager

• Desktop Applications

• Desktop Services

The ready-to-use desktop applications (accessories) build on capabilities
available to all OpenStep-based applications. These capabilities facilitate
application consistency and interoperability in areas such as fonts, color, and
on-line hypertext-based help. The common desktop services are usable by any
OpenStep application at runtime. These services, accessed programmatically
via OpenStep frameworks, include pasteboard (for cut and paste), drag and
drop, hyperlinks, spell checker, and print.

NEO Desktop provides the user with the same functionality as the NeXTSTEP
Application Environment. In addition, NEO Desktop enables the continued use
of the thousands of existing applications available for Solaris today. As an
integral part of SunSoft’s “universal desktop”, this includes use of Common
Desktop Environment (CDE) applications, MS-Windows applications using
Wabi™, and Apple Macintosh applications running under the Macintosh
Application Environment (MAE™). Interoperability such as drag-and-drop and
cut-and-paste is supported between applications from all of these different
environments. In addition to OpenStep applications, WABI, MAE, and
CDE-Motif applications can be launched from the NEO Desktop. In turn,
OpenStep applications can be launched from the CDE desktop.

NEO Desktop delivers a rich visual environment based on X11 with Display
PostScript extensions and provides an intuitive, easy to use, high quality,
multimedia user environment. Informative active icons, advanced drag and
drop support, embedded multimedia capabilities, and integrated help facilities
enhance the user experience and productivity. Interface consistency aids users
in adapting to employing new applications quickly, and productivity is
improved because the same functionality is available for all desktop
applications. As an example, the NEO Desktop spell checker may be invoked
from the text edit and electronic mail desktop applications, or any other
custom application.



10 Solaris NEO Operating Environment — January 1996

2

OpenStep

The OpenStep component of NEO consists of OpenStep-compliant
development frameworks and associated shared runtime libraries. The
OpenStep frameworks, supplied as Objective C class libraries, comprise the
following:

• Graphical User Interface (GUI) Framework

• Application Framework

• Foundation Framework

• Enabling Framework

OpenStep frameworks provide powerful reusable application building blocks
that can be used by developers in conjunction with the Workshop NEO
Graphical Application Builder.

NEO Network

NEO Network is an OMG CORBA-compliant networked object infrastructure.
It essentially provides an “operating system” for networked objects that is
particularly suitable for pre-emptive multitasking, multithreading
environments. NEO Network includes an Object Request Broker (ORB) and set
of object services.

NEO Network’s advanced technology is scalable, high performance and
designed to form a solid platform for shared service computing. Networked
administration and management facilities are built-in. In addition, NEO
Network is architected to enable future system evolution.

NEO Services

NEO Services is key to enabling the shared service computing model. NEO
Services is a comprehensive development framework and associated shared
runtime libraries for networked objects and shared services. The NEO Services
development framework is employed by the Workshop NEO Networked
Object Constructor.



The NEO Product Family 11

2

NEO Services automates and makes transparent functions that an application
developer would normally need to write for areas including shared services,
server availability, persistent object availability, concurrent requests, server
management, and application installation. It enables full, simplified use of the
NEO networked object infrastructure.

Completely unique to Solaris NEO, NEO Services is fully compatible with
CORBA specifications, and provides the extended services required to facilitate
rapid development of networked applications.

Solstice NEO

Management tools are key to the success of distributed computing
environments. By providing network management from any location,
enterprise management tools improve administrative capabilities and
responsiveness while reducing costs.

Solstice NEO, bundled with Solaris NEO, complements this strategy and adds
capabilities for the administration and management of networked applications
and shared services to the Solstice product family. With Solstice NEO,
resources can be monitored and controlled from any point on the network.
System, workgroup, shared service, and application management capabilities
are supported in the areas of:

• System Installation and Management
• Application Installation and Administration
• Workgroup and Shared Service Administration

A full set of tools provide for one-step system and application installation
including incremental upgrades and there is extensive on-line help.

WorkShop NEO Development Environment

A rich environment for the development of applications is a major component
of the NEO product family. SunSoft’s award winning WorkShop has been
extended to include tools unique to NEO. WorkShop NEO is an integrated
development environment that includes tools for building networked objects
and shared services and tools for building custom applications including GUI
front-ends.



12 Solaris NEO Operating Environment — January 1996

2

Figure 5 illustrates the component structure of WorkShop NEO. For additional
details, consult the WorkShop NEO Development Environment Product Overview
whitepaper.

NEOworks™

The NEOworks component of WorkShop NEO consists of:

• CORBA networked object development tools and the NEO Services
development framework

• OpenStep graphical application development tools and the OpenStep-
compliant GUI, Application, Foundation, and Enabling Frameworks

Figure 5 WorkShop NEO components

Tools for Constructing Networked Objects

Included in NEOworks are the Networked Object Constructor, IDL compiler,
Networked Object Debugger, and NEO Services Development Framework.
Coupled with the OpenStep graphical application development tools and
frameworks, and SunSoft’s SPARCompilers and SPARCworks tools,
NEOworks enables developers to rapidly design, implement, test, and deploy
shared services and complete networked applications.

Tools for Building Graphical Applications

SunSoft’s NEOworks OpenStep development tools leverage the industry-
leading NeXTSTEP™ object development environment. As part of NEOworks,
they deliver a competitive edge to enterprises relying on custom software

NEOworks

SPARCworks

SPARCompilers



The NEO Product Family 13

2

applications. Familiar tools such as Interface Builder, Project Builder, and Icon
Builder facilitate the prototyping and deployment of graphical front-end
applications with less effort and at lower cost.

SPARCworks and SPARCompilers

WorkShop NEO also includes advanced SPARCworks developer productivity
tools and SPARCompilers. This includes tools for C, C++ and Objective C
programming, tools for multithreaded programming, and tools to support
team development.

MS-Windows Connectivity

Today’s enterprise environment includes MS-Windows desktops, mainframes
with legacy databases, as well as workgroup LANs. A successful software
environment must provide access to and seamlessly integrate these
technologies into a coherent conduit for information exchange. SunSoft’s own
experience in deploying heterogeneous environments has provided us with the
needed vision to begin forging the standards and relationships with key
technology leaders to ensure this transparent connectivity.

Complementary technology from IONA Technologies, in combination with
Solaris NEO, provides connectivity with MS-Windows desktops including
interoperability with OLE and the underlying Component Object Model
(COM). This technology, based on IONA’s Orbix™ product, allows
MS-Windows applications to access NEO objects and shared services and act as
networked enterprise application front-ends. Network communication is based
on OMG’s CORBA 2.0 Interoperability specifications (see Figure 6).

Figure 6 Solaris NEO cross-platform connectivity

NEO Network ORBOrbix

MS-Windows
Connectivity

ORB-to-ORB
Connectivity

Any
Solaris NEO Cross-Platform Connectivity

CORBA 2.0
Interoperable

ORB



14 Solaris NEO Operating Environment — January 1996

2

Database Connectivity

A wide range of options are available in NEO to meet data storage, and
database access and integration needs. The built-in Solaris NEO persistence
support, based on technology licensed from Object Design, Inc., provides a
mechanism for applications with simple object data storage requirements. For
more complex needs, application developers can employ existing Relational
Database Management Systems (RDBMS), or Object Oriented Database
Management Systems (OODBMS).

Complementary technology from Persistence™ Software, in combination with
Solaris NEO, provides mechanisms for automatically mapping objects to
relational tables, ensuring data integrity by enforcing object constraints and
controlling relational transactions, as well as scaling to multiprocessor and
multiple database implementations.

As a founder of the Object Database Management Group (ODMG), SunSoft is
promoting standards for interoperability between OODBMS providers. The
ODMG-93 specification defines interfaces to object databases that ensure
heterogeneous interoperability, object portability and reuse, as well as
concurrent access.



15

NEO Desktop 3

The NEO Desktop is a user-friendly OpenStep-based application environment
consisting of the following elements:

• Window Manager

• Desktop Applications

• Desktop Services

The ready-to-use desktop applications (accessories) build on OpenStep
capabilities available to all OpenStep-based applications. These capabilities
facilitate application consistency and interoperability in areas such as fonts,
color, and on-line help.

The common desktop services are usable by any OpenStep application at
runtime. These services, accessed programmatically via OpenStep frameworks,
include pasteboard (for cut and paste), drag and drop, hyperlinks, spell
checker, and print.

The NEO Desktop also provides interoperability with other ICCCM-compliant
application environments. WABI, MAE, CDE-Motif and OpenStep applications
can be launched from the NEO Desktop. In turn, OpenStep-based applications
can be launched from the CDE desktop.



16 Solaris NEO Operating Environment — January 1996

3

Window Manager

The NEO Desktop offers a NeXTSTEP/OpenStep look and feel that supports
the powerful active window model, icon paradigm, and drag and drop direct
manipulation for icons and other GUI elements.

The NEO Desktop Window Manager is a X11-based ICCCM-compliant
window manager. This provides consistency and interoperability in the areas
of:

• Common window hierarchy

• Key and mouse mappings

• Application launch (double click)

• Cut and paste (simple text)

• Drag and drop

Desktop Applications

NEO Desktop includes a broad set of ready-to-use desktop applications built
on OpenStep’s capabilities. Described below, these applications include
Workspace Manager, Text Edit, Multimedia Mail, User Preferences, PostScript
Preview, and Terminal.

Workspace Manager

The NEO Desktop Workspace Manager is a customizable graphical user
environment for managing and using network-wide documents and
applications. It includes an application dock which manages applications in
icon form, and from which frequently used applications can be launched. It
also includes a file viewer to navigate the network with list, browser, and
iconic views and to open files in their associated applications.

Figure 7 illustrates the NEO Desktop Workspace Manager.

Text Edit

Edit is a mouse-based text editor for creating and editing ASCII and Rich Text
Format (RTF) files. It handles both TIFF and EPS images, which together with
other data types, may be embedded in a document using drag and drop.



NEO Desktop 17

3

Figure 7 NEO Desktop Workspace Manager

Multimedia Mail

Mail is an electronic multimedia mail tool compatible with UNIX mail. It
supports MIME formats and Rich Text Format (RTF) text and file attachments
(including Sun attachments). Images and other data types can be embedded in
a message using drag and drop.

User Preferences

Preferences provides a graphical interface to change personal NEO Desktop
and workspace preferences. Customizable preferences include screen
background color, system font types and sizes, language preferences, key
mappings, and mouse button placement.

PostScript Preview

Preview provides the ability to display PostScript files. It may also be used to
preview TIFF files by first converting them into PostScript.



18 Solaris NEO Operating Environment — January 1996

3

Terminal

Terminal provides a UNIX-style terminal capability integrated into the
OpenStep-based application environment.

Desktop Services

NEO Desktop includes a flexible set of common desktop services usable by any
application at runtime. Described in the following sections, these services
include pasteboard, drag and drop, hyperlinks, spell checker, and print.

Pasteboard

The Pasteboard Service enables cut and paste between documents of mutually
understood data types.

Drag and Drop

The Drag and Drop Service enables the direct manipulation of icons and other
GUI elements, with associated context-specific behavior.

Hyperlinks

The Hyperlinks Service enables data (text and other data types) in different
documents to be linked together and the links navigated. Documents can
originate from different applications.

Spell Checker

The Spell Checker Service enables applications to access a 100,000 word
Houghton Mifflin dictionary (in 16+ languages). The dictionary can be updated
to learn new words.

Print

The Print Service manages access to system printing resources.



19

OpenStep 4

The OpenStep component of NEO consists of OpenStep-compliant
development frameworks and associated shared libraries that make up the
OpenStep runtime system in Solaris NEO.

The OpenStep frameworks, supplied as Objective C class libraries, comprise
the following:

• Graphical User Interface (GUI) Framework

• Application Framework

• Foundation Framework

• Enabling Framework

OpenStep Runtime System

The OpenStep runtime system is most easily understood in terms of the
development frameworks it supports. The following sections describe these
frameworks. OpenStep frameworks provide powerful reusable application
building blocks that can be used by developers in conjunction with the
NEOworks Graphical Application Builder. The frameworks are extensible by
subclassing or delegation (via hooks to dynamically add new components) and
feature the following capabilities:

• Rich data-type support including images and multi-attributed text suitable
for supporting multimedia documents

• Same imaging model for screen and hardcopy (via Display PostScript)

• Common fonts and printing management



20 Solaris NEO Operating Environment — January 1996

4

• Consistent user help model

• Abstractions for cross-platform program portability

• Support for Sun “Level 3” internationalization for end-user, developer, and
administrator

The AppKit class library, SunSoft’s implementation of the OpenStep GUI and
Application Frameworks, is based on the X11 Display PostScript (DPS)
capability supplied as part of Solaris. AppKit provides a rich set of standard
objects useful for all applications, with a wide variety of customization
options. Included is a complete set of user interface objects and controls, as
well as objects that support data sharing and inter-application communication.

AppKit is similar in overall function to the CDE-Motif toolkit. It incorporates
DPS rendering within top level X Windows and supports Alpha compositing.
It provides extremely sophisticated shading and transparency effects beyond
the simple 3D shading provided by most X Windows toolkits. Other extended
features include support for lower level data types available in the OpenStep
Foundation Framework (implemented as the FoundationKit class library).

OpenStep GUI Framework

The OpenStep GUI Framework provides reusable, customizable objects for
building and using windows, panels, structural views, control views, images,
colors, text, and fonts. Table 1 lists the GUI Framework objects and their
classes.

Table 1: OpenStep GUI Framework objects and their classes

Objects Classes

Window Window, Screen, Event

Panel Panel, Menu, ActionCell, MenuCell, PopUpList,

Structural View View, Box, SplitView, ScrollView, ClipView

Control View Control, Cell, BrowserCell, Browser, Button, PopUpButton,

ButtonCell, Slider, SliderCell, Scroller

Image Image, ImageRep, BitmapImageRep, EPSImageRep,

CustomImageRep, CachedImageRep, Cursor

Color Color, ColorList, ColorPicker, ColorPanel, ColorWell

Text Text, CStringtext, TextField, TextFieldCell

Font Font, FontManager, FontPanel



OpenStep 21

4

Image classes support both TIFF and EPS formats. Predefined window panels
for incorporation in applications are provided for selecting colors and
PostScript fonts, and controlling font size, weight, and other properties.

OpenStep Application Framework

The OpenStep Application Framework provides reusable, customizable objects
for managing and manipulating workspaces, forms, help, filing, printing,
spelling, data exchange (for cut and paste, and drag and drop), and data links
(hyperlinks). Predefined window panels for incorporation in applications are
provided for help (enabling consistent, context-sensitive, hypertext linked, on-
line help), opening and saving files, printing documents, creating and
navigating hyperlinks, and for checking spelling and building user
dictionaries. Table 2 lists the Application Framework objects and their classes.

Table 2: OpenStep Application Framework objects and their classes

OpenStep Foundation Framework

The OpenStep Foundation Framework provides reusable, customizable objects
that support basic program functions. This includes operation processing,
creating and accessing basic structured and stored data, thread control, and
obtaining information about the program runtime environment. Table 3 lists
the Foundation Framework objects and their classes.

Objects Classes

Workspace Workspace

Form Matrix, Form, FormCell

Help HelpPanel

File SavePanel, OpenPanel

Print PrintInfo, PrintOperation, Printer, PrintPanel, PageLayout

Spell SpellChecker, SpellServer, SpellPanel

Data Exchange Pasteboard

Data Link (Hyperlink) DataLink, DataLink Manager, DataLink Panel, Selection



22 Solaris NEO Operating Environment — January 1996

4

Table 3: OpenStep Foundation Framework objects and their classes

OpenStep Enabling Framework

The OpenStep Enabling Framework provides reusable, customizable objects
that enable the integration of networked objects.

Callback Facility

The Callback Facility supports the ability for OpenStep-based Objective C
programs to call networked objects and properly handle the return results
through the use of callback objects. A callback object is a limited form of
networked object.

 Objects Classes

Operation Processing Object, Invocation, MethodSignature, Exception,

AssertionHandler

RunLoop

Notification, NotificationCenter, NotificationQueue

Proxy, DistantObject

Structured Data Array, MutableArray, Number, Value, Enumerator

String, Scanner, MutableString

Set, MutableSet, CountedSet

Data, MutableData, Serializer, Deserializer

CharacterSet, MutableCharacterSet

Stored Data BTreeBlock, BTreeCursor

ByteStore, ByteStoreFile

Dictionary, MutableDictionary

Coder, Archiver, Unarchive

Date, CalandarDate

TimeZone, TimeZoneDetail

Thread Control Thread, Lock, Connection, RecursiveLock,

ConditionLock

Program Environment ProcessInfo, Timer, UserDefaults, Bundle,

AutoReleasePool



OpenStep 23

4

AppKit Synchronizer

NEO application code can be multithreaded, but most libraries are not MT-
safe, including the AppKit. Only a single thread in a process may safely access
the AppKit at any one time. On its own, AppKit cannot properly handle
multiple threads arising from separate NEO Network ORB requests from the
same process. The AppKit Synchronizer can be used by applications to
serialize the request processing. This is sufficient for simple updates.



24 Solaris NEO Operating Environment — January 1996

4



25

NEO Network 5

The NEO Network component of Solaris NEO is an OMG CORBA-compliant
networked object infrastructure consisting of an Object Request Broker (ORB)
and set of object services. NEO Network is mature, tested technology. The NEO
Early Developers Release (EDR) was first distributed in June 1993, followed by
EDR-2 in May of 1994.

NEO Network provides a robust, networked object infrastructure that enables
object-to-object communication. It is the traffic controller and message router
between objects and provides application developers with the services
necessary to create systems of cooperating objects, shared services, and
integrated networked applications.

The design center of NEO Network can be summarized as follows:

• Standards based

• Scalable

• High performance

• Multithreading

• Shared service computing

• System evolution

• Developer productivity (through built in support for WorkShop NEO)

• Networked administration and management (through built in support for
Solstice NEO)



26 Solaris NEO Operating Environment — January 1996

5

NEO Network supplies the mechanisms required for objects to transparently
communicate and interact with each other across the network. Traditional
techniques require an intimate knowledge of networking to distribute an
application. Eliminating the need for complex programming, NEO Network
considerably reduces the knowledge and effort required to develop and
maintain networked applications.

Informal Definitions

The following informal definitions may assist in understanding the features
and capabilities of NEO Network:

Networked objects have OMG IDL interfaces and are accessed using an object
reference.

Networked services (or simply services) are collections of networked objects that
provide coherent chunks of shared functionality for clients.

Factories are services that create objects.

Server programs are executables that contain the implementations for one or
more object types.

Server processes (or simply servers) are server programs running in a Solaris
process.

Object instances (or simply objects) are specific instantiations of an object type
with its own state.

Introduction to NEO Network

Leadership of OMG CORBA Standards

SunSoft has authored or coauthored all the core OMG CORBA specifications to
date, and 9 of the 11 CORBAservices. The front-end of SunSoft’s OMG IDL
compiler has served as the industry’s reference implementation since SunSoft
made the source code for it freely available on the OMG Server in 1992. In
March 1995, with the goal of ensuring that all ORB vendors can interoperate
using the recently adopted OMG CORBA 2.0 Universal Networked Objects



NEO Network 27

5

specification, SunSoft supplied in source form and free of licensing charges, a
portable reference implementation of the mandatory inter-ORB protocol for
networked ORBs — the Internet IOP (IIOP).

Scalable Technology

NEO Network supports a wide variety of objects (large and small, persistent
and transient, local and remote) and accommodates large numbers of objects
and computers. There is no hard limit to the number of concurrent requests.
Additionally, there are no restrictions on the number of interfaces or
implementations per server process. There is no cost to adding a computer to
the system in that there are no required central points nor knowledge required
among existing computers.

NEO Network supports flexible activation of server processes, object
implementations, and objects. Objects and server processes can be deactivated
manually or automatically by setting an idle timeout. Queued requests are sent
to a newly activated server process. Client programs notice nothing other than
a slight delay.

All NEO object references are automatically persistent across server process
activations which means that client programs do not need to maintain any
additional information about objects in order to access them. NEO Network
also provides a form of fine-grained object — subobjects — which are
particularly useful for the efficient support for large numbers of objects stored
in databases. An unlimited number of subobjects can share the normal memory
and resources required for a single object reference.

High Performance Through Optimization

Multithreading (MT) was architected into NEO Network from the beginning.
MT is required by the shared service computing model to allow effective
sharing of services and information resources and for scalability, particularly to
support high performance server-based applications.

Overhead in the NEO Network ORB has also been minimized. Once
communication is established between the client and the server process, the
ORB gets out of the way. NEO Network features same-process and inter-
process optimization. Networking code is bypassed for same-process objects
and shared memory is used. Extensive caching is done to optimize such things
as location lookup, connection reuse, and object adapter information.



28 Solaris NEO Operating Environment — January 1996

5

Subobjects allow faster access to fine-grain objects. From the client program
point of view, object references for subobjects are indistinguishable from
normal objects.

Multithreading Throughout

NEO Network uses mutlithreading extensively internally and allows both
clients and server programs to be fully multithreaded. A thread is
automatically created for each incoming request. Clients may spawn threads
and issue concurrent requests. Additional supporting APIs for object
implementations are also provided (e.g., to quiesce threads). Proper use of MT
enables simpler and safer programming.

Platform for Shared Service Computing

NEO Network fully supports the shared service computing model. In NEO
Network, server processes can support many objects, objects of different
interfaces, and different implementations of an interface. This flexibility is
necessary for packaging, security, and performance reasons.

A rich set of object services is included that form building blocks for
applications composed of networked objects. These services also form the basis
for application interoperability and integration. Generic tools and frameworks
can be developed to use and manipulate objects and services that conform to
the standardized object service interfaces — without any other special
additional knowledge about their functionality. Sun “Level 4”
internationalization is also supported.

Architected for System Evolution

NEO Network has been architected with an number of features that facilitates
future system evolution and, in particular. the introduction of SunSoft’s Spring
technology such as “DOORS”, “M-Tables” and “subcontracts”. DOORS, a high
speed IPC mechanism, will provide significantly improved same-process and
inter-process performance. M-Tables will provide capabilities beyond current
dynamic dispatch mechanisms. Subcontract provides a general capability that
can be used to support such things as dynamic protocol stack selection.



NEO Network 29

5

NEO Network’s use of and support for opaque object references is crucial for
making transparent changes in such areas as security and replication support
and for providing dynamic system upgrades. The internal architecture of NEO
Network is based on virtual layering techniques that allow future transparent
introduction of capabilities such as object and service replication and high
availability. In addition, all NEO Network protocols and file formats are
versioned. The system is designed to be dynamically upgradable.

Security is a key aspect of the Spring operating system. SunSoft is working
within OMG to define a standardized security solution which we plan to
support in a future release of NEO Network.

NEO Network ORB

Networked Object Model

The NEO Network Object Request Broker (ORB) implements and supports the
object-oriented paradigm applied to networked objects. This includes the
encapsulation of behavior and state (whereby implementation details are
hidden), interface inheritance (interfaces can be extended — implementations
can be customized), and polymorphism (operation names are scoped to the
object definition so that generic framework code can work on application-
specific objects).

The ORB provides a uniform way of defining and accessing objects in the same
process, on the same computer, or across a network. Interfaces to objects are
separated from their implementation. This allows the same mechanisms to be
used to access all services — everything becomes an object.

Access to networked objects is by means of object references. Object references
are opaque data structures generated by the ORB which are used to identify
the target object of a request. They contain enough information for the ORB to
efficiently find the object. Unlike RPC mechanisms, this is a dynamic process
— object location and communication are not hard-wired.



30 Solaris NEO Operating Environment — January 1996

5

OMG Interface Definition Language

The OMG Interface Definition Language (IDL) provides a standardized way to
define the interfaces to networked objects. IDL is a strongly typed declarative
language based on C++ syntax. Strong typing is essential for building large,
robust, long-lived systems. The IDL definition is the contract between the
implementor of an object and the client.

IDL Compiler

NEO Network includes an IDL compiler that is architected as a single front-
end and back-ends supporting the C and C++ language mappings and for
loading information into the ORB Interface Repository. Upwards-compatible
SunSoft extensions include interface versioning and support for additional
data types including 64-bit ints, long dbls, wchars, and wstrings.

Programming Language Mappings

IDL language mappings provide a standardized way to access networked
objects using the developer’s programming language of choice in a style that is
natural to that language. Operations on networked objects are invoked in a
way that is consistent with the particular programming language being used.
For example, a networked object is accessed in C++ using a normal C++ object
method invocation.

NEO Network supports C and C++ mappings including full Any support (all
CORBA data types). In addition, C++ interfaces are provided for interpreting
TypeCodes.

ORB Operations

The NEO Network ORB core provides the location and transport mechanisms
necessary to deliver requests from a client to an object wherever the server
program and process for the object’s implementation reside. The current
location of the object on the network (including on the same computer) is
determined at runtime when the object is first accessed.



NEO Network 31

5

The remote transport is based on TLI. Local transport is based on shared
memory. Client cancellation is supported for both remote and local transport.
Retry and rebind exceptions are handled, allowing clients to resubmit requests
if a server process crashes or the ORB’s Basic Object Adaptor (BOA) becomes
unavailable.

The NEO Network ORB provides the basic CORBA::Object and CORBA::ORB

APIs. These provide operations for such things as stringify/destringify object
references and translations functions for TypeCode and Any. The Environment
interface handles exception data. The Principal interface supplies a client
invoker’s ID.

The NEO Network ORB also provides built-in administration interfaces
including those for BOA database inspection, consistency checking, backup
and restore, and for obtaining server process runtime addressing information
for debugging purposes.

Basic Object Adapter

The Basic Object Adapter (BOA) is the part of the ORB that is the conduit
between the object implementation, server process, and the ORB core. It allows
the ORB to locate, activate, and invoke operations on a networked object. The
NEO BOA supports a wide variety of common styles of object
implementations.

The BOA causes the activation and deactivation when needed of server
processes, object implementations and instances, and dispatches calls to
methods through “skeleton” code. Multiple activation models are also
supported.

The BOA is also responsible for generating and interpreting objects references
and the maintenance of object reference information including up to 1KByte of
associated persistent Reference Data. NEO object references are automatically
persistent across server process activations.

In addition to the standardized BOA API, the NEO BOA provides upwards-
compatible extensions that include support for subobjects and the ability to
block new requests to enable MT coordination for object-critical sections.



32 Solaris NEO Operating Environment — January 1996

5

Interface Repository

The Interface Repository is a fully distributed database integrated with the
NEO Network ORB. Interface definitions are located where the objects are
located so that there are no bottlenecks. Fully logical interface IDs are
employed. APIs are provided to allow the Interface Repository database to be
loaded, updated, backed-up, and restored.

The Interface Repository supports full type safety and internationalization and
enables runtime type checking. Distributed application evolution is provided
via major-minor interface version numbering and interface inheritance (and
programmatic use of narrowing).

Dynamic Type Support

The Dynamic Invocation Interface (DII) of the ORB enables the runtime
discovery of installed interfaces and the dynamic construction of operation
invocations. DII is particularly useful for generic object browsers.

The Dynamic Skeleton Interface (DSI) enables the delivery of requests to an
object implementation that does not have compile-time knowledge of the type
of the object it is implementing. This allows all requests on one or more object
types to share the same invocation code. This code can use narrowing with
runtime type checking using the Interface Repository. DSI is useful for building
inter-ORB bridges, debugging, interposing of objects, implementing objects
with interpreters and scripting languages, and dynamically generating
implementations.

Inter-ORB Communication

SunSoft took a leadership position and has been very active in contributing to
the development of a standard inter-ORB protocol at OMG. SunSoft
contributed bridging and protocol technology to the Universal Networked
Objects (UNO) specification that was adopted by OMG in 1994.

SunSoft has supplied, in source form and free of licensing charges, a portable
reference implementation of an engine for the CORBA 2.0 mandatory inter-
ORB protocol (the Internet IOP) for networked ORBs. (The IIOP is the TCP/IP
transport mapping of the CORBA 2.0 General IOP or GIOP.) This software
formed the basis for the multivendor interoperability demonstration at the
1995 ObjectWorld, in San Francisco.



NEO Network 33

5

The Internet IOP Engine does the work to generate, receive, and handle the
CORBA 2.0 standard protocol and is composed of four parts: a CDR (Common
Data Representation) marshaling engine, a TypeCode interpreter, an Internet
IOP Engine framework, and modules that enable the engine framework and
the CDR marshalling engine to send, receive, and dispatch Internet IOP
messages.

The Internet IOP software is written in C++ and is highly portable. The
software has been compiled using: SPARCworks (for SPARC) and PROworks
(for x86) C++ 4.0.1, Borland C++ 4.5, GNU C++ 2.6.3, and Visual C++ 2.0 on
the following operating system platforms: Solaris 2.4 (both SPARC and Intel
platforms), SunOS 4.1 on SPARC, Linux (1.1.47 and later) on 486 hardware.,
NEXTSTEP 3.2, Windows NT and Windows 3.5. To retrieve the software, send
an electronic mail message with the subject help to iiop-bridging@omg.org and
the mail server will respond with instructions, or use anonymous FTP to
connect to the ftp.omg.org server.

NEO Network Object Services

The NEO Network Object Services are building blocks for applications
composed of networked objects. They also form the basis for application
interoperability and integration by enabling application components to be
designed and implemented separately yet work together in useful ways.

As a particular example of this, the NEO Network Object Services allow
generic tools and application frameworks to use and manipulate
independently-developed off-the-shelf objects and services. Such tools and
frameworks need not have any other special additional knowledge about the
objects and services other than that they conform to the standardized object
service interfaces.

NEO Network provides implementations of a rich set of generally useful
services:

• Naming Service

• Event Service

• Property Service

• Relationship Service

• LifeCycle Service



34 Solaris NEO Operating Environment — January 1996

5

Other OMG CORBAservices planned for future releases include:

• Externalization Service

• Transactions Service

• Query Service

• Security Service

Naming Service

The NEO Naming Service provides a standardized way of storing and
retrieving object references by name. It provides the ability to bind a name to
an object reference relative to a naming context. A naming context is an object
that contains a set of name bindings in which each name is unique. To resolve a
name is to determine the object associated with the name in a given context.

Because naming contexts can be named in other naming contexts, the Naming
Service supports hierarchical naming schemes for objects and naming contexts.
Graphs of naming contexts can be supported in a federated fashion. This
scalable design allows the distributed, heterogeneous implementation and
administration of names and naming contexts.

A canonical representation for compound names is used such that no
particular name syntax is mandated. This, and the provision of a name “kind”
attribute, facilitates application localization and places minimal constraints on
higher-level name policies.

Event Service

The NEO Event Service provides capabilities for asynchronous event
notification between event producers and consumers that can be configured
together in a very flexible and powerful manner. Event channels decouple
suppliers and consumers, and support multiple suppliers and multiple
consumers. Suppliers can generate events without knowing the identities of
the consumers. Conversely, consumers can receive events without knowing the
identities of the suppliers.



NEO Network 35

5

Push-style and pull-style delivery models and event fan-in (collect) and fan-out
(multicast) are supported. Event content is IDL type Any. Typed event
channels extend basic event channels to support typed interaction. Extended
interfaces also allow event channels to be chained or piped together by third-
parties without the involvement or knowledge of the suppliers or consumers.

NEO Network includes two Event Service implementations with different
qualities-of-service: (1) fully persistent, and (2) transient events, persistent
connections. Their design is scalable and is particularly suitable for distributed
environments. There is no centralized server or dependency on any global
service.

Property Service

The NEO Property Service is a simple, extensible service that enables
properties to be dynamically associated with any object independent of its
static IDL interface attributes. Properties can be added, modified, deleted and
retrieved without the involvement of the associated object.

A PropertySet is a “first class” networked object that maintains a set of key-
value pairs. The keys are strings and values are IDL type Any. The PropertySet
interface defines operations to create properties, get and set property values,
delete properties, enumerate the properties in the set, and destroy the property
set. PropertySet objects can easily be shared with other applications.

Relationship Service

Based on the entity-relationship model, the NEO Relationship Service provides
a standardized way of linking networked objects. One-to-one,
one-to-many, and many-to-many binary relationships are supported.

Two common kinds of relationships are predefined: containment and reference.
Examples of these are a document that contains an image and a table, and a
document that references an appendix. The service is extensible and
developers can define additional kinds of relationships.

The service defines two new types of objects: relationships and roles. A role
object represents an object in an relationship. A relationship object is created by
passing a set of roles to a relationship factory. Type and cardinality constraints
can be expressed and checked and referential maintenance is supported.



36 Solaris NEO Operating Environment — January 1996

5

Relationships are established in a way that does not require the involvement of
objects being related. Because relationships are first class objects themselves,
third parties (e.g., utility tools and object browsers) can traverse and
manipulate the connections between the objects. Navigation performance and
availability is comparable to the direct use of object references; role objects can
be collocated with their objects and need not depend on a centralized
repository of relationship information. As such, navigating a relationship can
be a local operation.

The Relationship Service also supports traversals of graphs of related objects
and thus provides the basis for compound operations.

LifeCycle Service

The NEO LifeCycle Service establishes conventions for creating, deleting,
copying and moving objects. Because objects can be networked, the service
accommodates life-cycle operations on objects in different locations.

The client program’s model of creation is defined in terms of factory objects. A
factory is an object that creates another object. As with any object, factories
have well-defined IDL interfaces. The LifeCycle Service also includes the
definition of an interface for a generic factory. This allows for the definition of
standard creation services.

Compound life-cycle operations address copying, moving and deleting objects
that are connected to other objects by relationships. Operations are propagated
in one of three ways: none, shallow, and deep. Each type of relationship defines
the required propagation behavior (e.g., copying of contained objects but not
referenced objects).



37

NEO Services 6

NEO Services is a comprehensive development framework and associated
shared libraries for networked objects and shared services. The development
framework is employed by the NEOworks Networked Object Constructor. The
shared libraries make up the NEO Services runtime system in Solaris NEO.

Unique to NEO, NEO Services is fully compatible with CORBA and enables
full, simplified use of the NEO Network object infrastructure. It automates and
makes transparent functions that an application developer would normally
need to write in the areas of:

• Workgroup Support

• Shared Service Finder

• Server Availability

• Persistent Object Availability

• Data Store Manager

• Concurrent Requests

• Implementation Support

• Server Management

• Application Installation

Table 4 summarizes the functions of NEO Services.



38 Solaris NEO Operating Environment — January 1996

6

Table 4: NEO Services functions

NEO Services Runtime System

Workgroup Support

The NEO Workgroup Support establishes and implements standardized
workgroup and computer resource naming policies. The workgroup is the unit
for administration, management and sharing in NEO. A workgroup is a
collection of computers that can include workstations and server machines.
Each user may select which of their own resources may be shared by the
workgroup, and which workgroup services are to be used instead of local
resources. A user can have a private part of the workgroup resources reserved
for their development or other purposes.

Function Description

Workgroup Support Establishes and implements standardized

workgroup/computer naming policies, and allows access to

shared services

Shared Service Finder Registers and finds services based on NEO Network Naming

Service, and enables relocation of services without changing

or recompiling client code

Server Availability Simplifies server activation, provides transparent

management of object implementations grouped in a server

program, and handles housekeeping functions

Persistent Object Availability Provides transparent management of persistent objects,

manages application-independent ORB-related

housekeeping, automates support for life-cycle create and

destroy and object instance and implementation activation

Data Store Manager Provides transparent persistence for object state

Concurrent Requests Provides transparent management of concurrent requests to

multithreaded object implementations, and supports multiple

locking policies

Implementation Support Provides functions that simplify and make easier

development of object implementations

Server Management Provides server and application management functions and

transparent support for management objects installed as part

of applications

Application Installation Provides transparent support for application installation



NEO Services 39

6

Workgroup Support allows access to shared services by enabling services to be
registered in a well known place and found using the NEO Services Shared
Service Finder. In this way, the need for applications to have a detailed
knowledge of the system name space is eliminated.

Shared Service Finder

The NEO Shared Service Finder employs a federated approach to registering
and finding services based on the NEO Naming Service. Building on the
Workgroup Support resource naming policies, it uses a federation of
predefined and application-specific naming contexts.

Services (i.e., named objects) are registered at install time or runtime in a well
known place. Applications can then dynamically find a service that is available
to run in an appropriate server process. A service can be local to a computer or
shared by a workgroup. A mode can be selected that controls whether a
deployed service or a version under development is found.

The Shared Service Finder enables the relocation of services without needing to
modify or recompile client code. In this way, service requests can be
distributed to the most appropriate resource in a workgroup and dynamic load
balancing is facilitated.

Server Availability

The NEO Server Availability builds on and simplifies NEO Network ORB
server process activation. It provides the transparent management of the
availability of object implementations grouped in a server program and takes
care of application-independent ORB-related housekeeping functions that the
server program developer would otherwise need to provide. With NEO
Services, server program developers need only write minimal application-
specific “server availability” code if needed.

Server Availability automates server process startup on arrival of a request for
any object in a server program as well as server process shutdown after a
period of inactivity. The timeout (i.e., maximum idle period) is configurable
per server process. The process waits for all objects in the server process to be
deactivated before shutdown occurs. The wait interval and shutdown retry
cycle time are configurable.



40 Solaris NEO Operating Environment — January 1996

6

Because server availability is handled in a standardized way, the system can
automatically manage and recover resources such as memory. In conjunction
with the NEO Services Persistent Object Availability, the use of system
resources is minimized.

Persistent Object Availability

The NEO Persistent Object Availability builds on and simplifies NEO Network
ORB object activation. It provides transparent server-side management of the
availability of persistent objects and takes care of application-independent
ORB-related housekeeping functions that the object developer would
otherwise need to provide. With NEO Services, object developers need only
write minimal application-specific “persistent object availability” code if
needed.

Persistent Object Availability automates support for object life-cycle create and
destroy, and object instance and implementation activation. It automates the
activation of the object implementation and instance on the arrival of a request.
A servant C++ object implementing the operations of the object’s interface,
transient data and other functions is automatically instantiated when an object
is activated, and destroyed when the object is deactivated.

Persistent Object Availability also automates the deactivation of objects after a
configurable period of inactivity. The timeout (i.e., maximum idle period) is
configurable per object implementation. It transparently handles thread
quiescing and waits for all pending operations to complete using a
configurable wait and retry cycle time.

Optional transparent persistence of an object’s state is provided based on the
NEO Data Store Manager. This provides automatic atomic update at timed
intervals and before deactivation of the object. The time interval is configurable
per implementation. In addition, an infrastructure is provided to support
custom persistence. All the hooks necessary to incorporate custom persistence
mechanisms are provided to address cases where more control is needed over
performance and the handling of data formats and legacy data.



NEO Services 41

6

Data Store Manager

Used in conjunction with Persistent Object Availability, the NEO Data Store
Manager provides transparent persistence for the state of an object. It supports
the model that allows networked objects to be implemented by code organized
as servant objects.

Based on technology provided by Object Design, Inc., the Data Store Manager
is designed to efficiently support development models in which applications
are composed of many fine-grain objects comparable in size and complexity to
typical C++ objects. Data objects can contain pointers to other data objects,
allowing users to create persistent representations of complex, linked data
structures in a natural manner.

A subset of IDL, called the Data Definition Language (DDL), is used to define
the persistent state in terms of “data objects”. The IDL language binding
approach is used to provide client bindings for a wide range of architectures
and programming languages. Stored data maintains the same level of type
safety as that provided by IDL.

Applications can create “data stores” (the unit of storage) in any part of the file
system to which they have access. Transparent to clients, data objects are
cached in local memory. Access to individual attribute values is essentially at
the speed of native programming language calls. Modifying the persistent state
of an object is done by simply modifying the C++ state of the object in memory
— the rest is automatic and transparent.

Concurrent access to clusters within a data store is supported, making it
ideally suited for supporting NEO multithreaded server programs. Automatic
atomic updates provide a two-phase commit protocol, in anticipation of
distributed transactions involving multiple services. Either all the changes
made within an update are recorded, or none of the changes are recorded. A
server process can be atomically updating several clusters with different
schema definitions concurrently.

Based on the OMG CORBAservices Persistent Object Service specification, the
Data Store Manager is a upwards-compatible subset of the object database
specification developed by the Object Database Management Group (ODMG).
An object implementation can therefore be easily upgraded as application
requirements evolve.



42 Solaris NEO Operating Environment — January 1996

6

Concurrent Requests

The NEO Network ORB spawns a new thread for each incoming request to a
server process. NEO Concurrent Requests provide transparent management of
concurrent requests to multithreaded object implementations, ensuring the
integrity of shared data. This frees developers from the implementation details
of multithreaded programming, allowing them to focus on the application,
while gaining the significant performance advantages and scalability of Solaris’
advanced multithreading technology.

Three different locking policies are supported: mutex (default), reader-writer,
and fine grain. The locking policy is selectable on a per object implementation
basis. Scoped locks are supported: with mutex and reader-writer locking, locks
are automatically released when out of scope of the locking variable, or when
the variable is destroyed.

• Mutex Locking

Only one request at a time is allowed for each object (i.e., only one method
in the object implementation is active at any time): a single thread gains
exclusive access to an object’s persistent state. Other objects (instances as
well as implementations) in a server process can be servicing requests
simultaneously.

• Reader-writer Locking

Operations that only read shared data (persistent and transient) are
distinguished from those that (potentially) may write or change data. Each
operation in an object’s interface is defined as either reader or writer. This
locking policy enables multiple concurrent reader operations but writer
operations gain exclusive use.

• “Fine grain” Locking

Higher level locking can be turned off and developers can implement
custom fine grain locking policies. Shared data can be protected at the
thread mutex level within a method.

Implementation Support

The NEO Implementation Support provides functions that simplify and make
easier the development of object implementations. This includes:

• Servant Support: constructor, destructors, locking, and deactivation



NEO Services 43

6

• Smart Object References: automatic memory deallocation for smart object
references when they go out of scope or upon assignment

• Reference Data Manipulation: simplified manipulation and management of
reference data associated with object references

• Exception Handling and Message Text: including an internationalized message
text catalog, extensible by developers

• Object Tracing: standardized, automated way of tracing and logging;
controlled on a per-server process basis

• Message Logging: predefined logging macros (in addition to trace messages)
and runtime configurable control of message source, message destination,
and output format on a per-server process basis

• Utility Support: ease-of-use support for custom persistence, subobjects, and
other NEO Network and NEO Services features

Server Management

Individual custom applications can readily capitalize on the advanced built-in
administration and management capabilities of Solaris NEO. The NEO Server
Management provides server and application management functions and
transparent support for management objects that are installed as part of an
application. Management objects are automatically generated by the
NEOworks Networked Object Constructor and incorporated into the server
program along with application objects.

Server Management completely takes care of server management and
application management functions that a server program developer would
otherwise need to provide. It enables the status of computers, server processes,
and objects to be interactively monitored, administered, and managed by
Solstice NEO tools.

With NEO Services, server processes can be activated and shutdown manually,
the current status of a server process can be queried, object tracing and
message logging can be turned on or off, and the persistent state (transparent
and custom persistence) of objects in the server process can be backed-up and
restored without any programming by the application developer.



44 Solaris NEO Operating Environment — January 1996

6

Application Installation

NEO Application Installation provides transparent support for the application
installation process. Application installation code is automatically generated by
the NEOworks Networked Object Constructor and accessed and controlled by
Solstice NEO tools. Application Installation completely takes care of
installation functions that the application developer would otherwise need to
provide.

Installation steps that are automated include the registration of server
programs with the NEO Network ORB, the installation of IDL information
associated with server programs in the NEO Interface Repository, and the
registration of shared services for access via the NEO Shared Service Finder.

The NEO Application Installation builds on the easy-to-use SVR4 packaging
concept, providing a familiar and reliable method for installing and
deinstalling software packages. Applications and objects are installed and their
availability automatically registered, allowing seamless upgrading with
minimal impact on users.



45

Solstice NEO 7

Solstice NEO extends Sun’s strategy of using the network to manage the
network itself by using objects to manage objects. Solstice NEO adds
capabilities for the administration and management of networked applications
and shared services to the Solstice product family. With Solstice NEO,
resources can be monitored and controlled from any point on the network,
improving responsiveness and reducing costs. System, workgroup, shared
service, and application management capabilities are supported.

A full set of administration and management tools provide for one-step system
and application installation, full backup and restore, and extensive on-line
help. Both command line and graphical user interface tools are provided to
facilitate both an automated, scripted method, or a graphical, interactive
browsing approach. Computers can be upgraded incrementally so that the
entire network need not be affected at once. Implementations can be evolved in
a way that allows multiple versions to coexist in the same server program, and
multiple server programs to coexist as separate processes.

Solstice NEO provides a comprehensive set of functions through a suite of
three tools: NEOadmin, ServerViewer, and NameViewer. These tools are briefly
described below, and the functionality they provide is described in the sections
that follow.



46 Solaris NEO Operating Environment — January 1996

7

Advanced Administration and Management Tools

neoadmin

The neoadmin utility is an interactive command line tool implemented as a Tool
Command Language (Tcl) shell. Tcl is similar to the Bourne shell, but more
complete. Scripts may be written to automate system administration functions.
Extensive on-line help is included in neoadmin.

ServerViewer

The ServerViewer is an intuitive and powerful graphical tool with a user
interface style similar to the NEXTSTEP file browser. ServerViewer provides
centralized monitoring and control functions. Views may be filtered to isolate a
particular computer or workgroup.

Figure 6 ServerViewer performs basic system management tasks such as controlling
and displaying the status of object servers and processes, controlling
tracing and logging facilities, and administering workgroups.



Solstice NEO 47

7

NameViewer

NameViewer is a graphical browser that allows the interactive traversal of
hierarchical naming contexts. Naming contexts may also created, removed, and
their contents listed.

System Installation and Management

System Installation

Solstice NEO enables one-step installation of Solaris NEO. When Solaris NEO
is installed on a computer that computer automatically becomes accessible
from other computers. Server programs are installed using SVR4 installation
packages. Clients require no special installation. Solaris NEO can be installed
on a computer using NFS mounted files as well as from a CD-ROM.

Interface Repository Administration

Interface information can be interactively traversed and displayed. Interfaces
can also be shown individually or to any specified depth.

Naming Service Administration

Hierarchical naming contexts (including predefined workgroup naming
contexts) can be interactively traversed and listed in browser or list formats.
Naming contexts can also be created or removed.

Message Logging Control

Message logging can be toggled on and off per server process. Message source,
destination (i.e., file, console, syslog, or custom handler), and output format
can be changed and log files can be viewed.



48 Solaris NEO Operating Environment — January 1996

7

Workgroup and Shared Service Administration

Workgroup Administration

Workgroup Administration enables workgroups to be created and maintained.
This includes adding and removing a computer from a workgroup, listing the
names of computers in a workgroup, and querying their status.

Workgroup Data Backup and Restore

Backup of all the data associated with a workgroup is supported, and may be
carried out while the system is running. To ensure a consistent snapshot, a
hold is put on running server processes (preventing further request
processing), the data is saved, and the server processes are then released. Data
includes server process data, object state (transparent and custom persistence),
internal NEO Network ORB data (BOA and Interface Repository databases),
Server Configuration Files, and the NEO Network ORB control file.

Backups are run as a background process on each computer. A two phase
process handles problems arising from the distributed nature of the data and
ensures the successful completion of the backup or restore. The status of
backups can be queried and backups can be removed (i.e., archived).

Shared Service Administration

Shared Service Administration allows services to be registered, exported into a
workgroup for sharing, and deregistered. The available services in a
workgroup or on computer can be listed. A service can be removed from a
specific computer or from each computer in a workgroup, and can be relocated
by re-registering it in another workgroup or on a different computer.



Solstice NEO 49

7

Application Installation and Management

Application Installation

SVR4 installation packages are automatically generated by NEOworks
Networked Object Constructor. The generated package contains all the
required headers, libraries, stubs, skeletons, IDL files, Interface Repository
files, server programs, client programs, exception message catalogs, user
started server programs, and shell scripts.

These packages are installed on a computer using the Solaris visual Software
Manager tool. Application upgrading and deinstallation are also supported.

Automated install-time steps include the registration of server programs with
the NEO Network ORB, the installation of IDL information associated with
server programs into the NEO Interface Repository, and the registration of
shared services for access via the NEO Shared Service Finder. Optional custom
scripts are also supported to “populate” naming contexts with required objects.
These scripts are run once an application is installed and the associated server
programs registered.

Server Monitoring and Management

The names of servers can be listed and their status queried. This includes what
is installed, verification that server programs are correctly registered, what is
currently running, and how many objects are activated.

Servers processes can be put on hold (e.g., for upgrades), released, shutdown,
and restarted (e.g., to restart a hung server). The Server Configuration File can
also be displayed which contains trace, logging, and server shutdown
information.

Object Trace Control

Object tracing can be selectively toggled on and off per interface (e.g., method
entry and exit). Trace output destination can also be changed.



50 Solaris NEO Operating Environment — January 1996

7



51

References

The Common Object Request Broker: Architecture and Specification, Object
Management Group, 1994.

NEO Programming Guide, Beta Version, SunSoft, Inc., May 1995.

NEO Systems Management Guide, Beta Version, SunSoft, Inc., May 1995.

NEO Tutorial, Beta Version, SunSoft, Inc., May 1995.

NEO System Installation, Beta Version, SunSoft, Inc., May 1995.

NEO Programming Interfaces Reference, Beta Version, SunSoft, Inc., May 1995.

Solaris NEO Product Family, SunSoft, Inc., May 1995.

Workshop NEO Development Environment, Product Overview, SunSoft, Inc.,
January 1996.

Solaris OpenWindows: OpenWindows V3 Collection: Release Reports and White
Papers, Part Number 91021-0, SunSoft Inc.

Solaris SunOS 5.0: SunOS 5.0 Multithreading and Real-Time, Part Number
91025-0, SunSoft Inc.

Solaris ONC: Design and Implementation of Transport-Independent RPC, Part
Number 91028-0, SunSoft Inc.

Solaris SunOS: SunOS 5.0 Release Report, Part Number 91023-0, SunSoft Inc.

The ToolTalk Service, Part Number 91022-002, SunSoft Inc.



52 Solaris NEO Operating Environment — January 1996

Introduction to the ToolTalk Service, Part Number 91031-002, SunSoft Inc.

Project DOE: Distributed Objects Everywhere, Part Number 91035-0, SunSoft Inc.

The ToolTalk Service: An Inter-Operability Solution, Part Number ISBN 013-
088717-X. SunSoft Press/Prentice Hall, Englewood Cliffs, NJ.

ToolTalk and Open Protocols: Inter-Application Communication, Part Number ISBN
013-031055-7, SunSoft Press/Prentice Hall, Englewood Cliffs, NJ (June 1993).

An Overview of the Spring System, James G. Mitchell, et al, SunSoft, Inc., 1994


